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Abstract 
Text categorization is the task of labelling text data from a predetermined set of thematic 

labels. In recent years, it has become of increasing importance as we generate large volumes 

of data and require the ability to search through these vast datasets with flexible queries. 

However, manually labelling text data is an extremely tedious task that is prone to human 

error. Thus, text classification has become a key focus of machine learning research, with the 

goal of producing models that are more efficient and accurate than traditional methods. 

 

This project explores the recently enhanced deep learning techniques of convolutional neural 

networks and their fusion with graph analysis (i.e. graph convolutional neural networks) in 

the field of text categorization and compares their performance to established baseline 

models and simpler multilayer perceptrons. We show through experiments on three major 

text classification datasets (Rotten Tomatoes Sentence Polarity, 20 Newsgroups and Reuters 

Corpus Volume 1) that graph convolutional neural networks can naturally work in the space 

of words represented as a graph and perform with greater or similar test accuracy when 

compared to standard convolutional neural networks and simpler baseline models. 

 

 

A Note on Notation 
Abbreviated model architectures in this report abide by the following notation: 

 

• Fully-Connected Layers: FC[No. of Units] 

• Convolutional Layers: CL[Filter Width]_[No. of Features] 

• Graph Convolutional Layers: GC[Filter Size / Support Size]_[No. of Features] 

• (Graph) Pooling Layers: P[Pooling Size] 

• Multiple Layers: [Layer 1]-[Layer 2] 

 

Please note that dropout layers, reshaping/concatenation operations and the output softmax 

layer are ignored when the architecture is noted in its abbreviated form. 
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1. Introduction 

1.1 Motivation 

Over the last couple decades, the field of content-based document management tasks 

collectively known as information retrieval has gained prominent status due to the increased 

availability of documents in their digital form and the ensuing need to access them in flexible 

ways. One of the key techniques used to handle and organize text data is text categorization 

(or text classification, topic spotting), which is the task of labelling natural language texts with 

thematic categories from a predefined set [22]. This method of ‘tagging’ text data has wide 

applicability in real world applications as it allows users to classify news stories, efficiently 

search for information on the Internet and catalog customer reviews as positive or negative, 

to cite a few examples. Because building text classifiers by hardcoding the rules is difficult, 

time-consuming and may lead to inconsistent results, it is beneficial to learn these classifiers 

from existing labelled data using machine learning. 

 

In the field of text categorization, text data is often represented as document vectors, which 

are essentially histograms of the words in the document that match a fixed vocabulary 

extracted from the corpus. There are several existing machine learning algorithms that have 

proven to be useful in classifying document vectors, most notably the application of Linear 

Support Vector Classifiers and Multinomial Naïve Bayes Classifiers. The same document 

vectors have also been successfully used to train neural networks made up of fully-connected 

layers (i.e. multilayer perceptrons) to classify text data. However, with recent strides in deep 

learning, various models and algorithms have surfaced that not only take advantage of the 

document vectors but also the underlying vocabulary of the raw documents by performing 

composition over the vocabulary’s corresponding word embeddings [5]. Pre-trained word 

vectors, such as word2vec [16] or GloVe [20], encode the semantic relationships between 

words, thus, allowing the model to explore associations between the semantics of a text and 

its assigned label. 

 

One such example of this is the application of convolutional neural networks (CNNs) in the 

field of text categorization. CNNs are a class of deep, feed-forward artificial neural networks 
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inspired by biological processes that have primarily been popularized due to their success in 

image, video and sound tasks. They work by translating convolutional filters across data 

represented as a grid, revealing local features that are shared across the data domain [12]. 

CNNs can be applied on text data by replacing the original words with their respective word 

vectors (thus forming a 2-D grid) and sliding convolutional filters across this sequence of 

embeddings, extracting potentially useful information. 

 

However, while CNNs have been extremely successful with applications where the underlying 

data representation has a grid structure, they fall short when certain datasets can be better 

represented by higher-dimensional data structures like graphs. As a result, novel deep 

learning techniques have emerged in recent years through the fusion of traditional CNNs and 

graph analysis to tackle this very problem [3] [6]. Graph convolutional neural networks (Graph 

CNNs or GCNNs) use filters that translate in the graph’s spatial domain and use the same 

motivations of local features and translational invariance as standard CNNs. GCNNs can be 

applied to the field of text categorization by feeding the network document vectors as well 

as a feature graph constructed from the word embeddings of the underlying vocabulary, 

allowing the network to take advantage of the semantic relationships between the word 

vectors as well as the relationship between the frequency of the words and the class (i.e. 

category or topic) of the document. 

 

1.2 Purpose and Scope 

The purpose of this project is to (1) implement existing deep learning models in the field of 

text categorization, (2) improve their architecture and (3) compare their performance on 

popular datasets against each other as well as against standard baseline models to build the 

best possible model(s) for text categorization, with a primary focus on graph convolutional 

neural networks. 

 

This project explores three major deep learning architectures for text categorization, namely 

F. Chollet’s CNN [4], Y. Kim’s CNN [10] and Graph CNN (ChebNet [6], Spline [3] and Non-

Parametric Fourier). We compare their relative performance on three benchmark text 

classification datasets – Pang and Lee’s Rotten Tomatoes sentence polarity dataset [17] [18], 
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20 Newsgroups [21] and Reuters Corpus Volume 1 [14]. The pre-trained word embeddings 

used throughout this project are Google’s publicly released word2vec word vectors (for 3 

million words and phrases), which were originally trained on a portion of the Google News 

dataset (about 100 billion words) [15]. 

 

Additionally, at the end of the implementation, training and selection of the models, we build 

a client-side application to better demonstrate the capabilities of the chosen model(s). 

 

1.3 Contributions 

This project was completed successfully and all of its objectives were fulfilled. The primary 

contributions of the project are listed below: 

• All three deep learning models and three baseline models were implemented in Python 3 

using TensorFlow & scikit-learn (Chapter 3) and the entire codebase has been released as 

open-source software.1 

• Improvements were made to the deep learning models by modifying their architecture, 

strengthening regularization and tweaking weight initialization in addition to other minor 

changes (Chapter 3). 

• The models were comprehensively tested on the three benchmark datasets and their 

performance was compared against each other as well as published results in existing 

literature (Chapters 4 & 5). 

• Our machine learning pipeline (preprocessing + model) for graph convolutional neural 

networks outperformed test accuracies quoted in existing literature for 20 Newsgroups 

in [6] and RCV1 in [7] (Chapters 4 & 5). 

• A client-side application for news classification was built for selected models trained on 

the RCV1 dataset (Chapter 6). 

 

1.4 Project Timeline 

This project was worked on from August 2017 to March 2018, including the time needed for 

us to familiarize ourselves with the subject matter. Progress on this project was tracked using 

                                                        
1 https://github.com/SuyashLakhotia/TextCategorization 
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a blog2, where summaries of the completed tasks and interesting findings were uploaded on 

a weekly basis. Meetings with the supervising professor were scheduled on a bi-weekly basis 

during the initial stages of the project and on a weekly basis towards the end to clarify doubts 

and discuss the results of the project thus far. 

 

1.5 Organization of Report 

The remainder of this report is organized as follows: 

• Chapter 2 provides background information and elaborates on the intuitions behind the 

baseline models, neural networks, convolutional neural networks, graph convolutional 

neural networks and word embeddings. 

• Chapter 3 describes the specific deep learning models implemented and tested in this 

project as well as our improvements to these models. 

• Chapter 4 details the datasets used to benchmark the models, the preprocessing of these 

datasets and the performance results of the models. 

• Chapter 5 discusses the results from Chapter 4 and provides insights into the differences 

in the models’ performance. 

• Chapter 6 gives a brief overview of the client-side application built for the best models 

trained on the RCV1 dataset. 

• Chapters 7 & 8 conclude this report and provide suggestions for future work in the field 

of deep learning for text categorization. 

 

  

                                                        
2 http://suyashlakhotia.com/FYPSnippets/ 



 5 

2. Background / Literature Review 

2.1 Linear Support Vector Classifiers 

Linear Support Vector Classifiers are a class of machine learning algorithms that aim to define 

a linear boundary (i.e. linear hyperplane) in the multi-dimensional feature space to separate 

samples belonging to different classes. The goal of a Linear SVC (in the case of linearly 

separable classes) is to define a linear hyperplane that maximizes the margin between the 

samples of different classes, improving generalization. However, since most real-world 

datasets are not truly linearly separable, slack variables are introduced that allow a certain 

number of samples to lie on the wrong side of the hyperplane, creating a “soft margin”. 

 

Mathematically, for a two-class linearly separable classification problem, Linear SVCs define 

a linear hyperplane such that for any sample 𝒙: 

 

𝒙"𝒘 + 𝑏 ≥ +𝑎				for				𝑦 = +1 

𝒙"𝒘 + 𝑏 ≤ −𝑎				for				𝑦 = −1 

Figure 1: Linear SVC Equations for Linearly Separable Classes 
 

 

Figure 2: Linear SVC on Iris Dataset (2 Features, 3 Classes) 
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2.2 Multinomial Naïve Bayes Classifiers 

Naïve Bayes classifiers are a set of supervised machine learning algorithms based on Bayes’ 

theorem with the assumption of independence between every pair of features. In spite of 

their simplicity, naïve Bayes classifiers have been shown to perform well on several real-world 

tasks, including document classification and spam filtering [26]. 

 

Mathematically, for any input sample 𝒙 with 𝑛 features: 

 

𝑦2 = argmax
7

𝑃(𝑦);𝑃(𝑥=|	𝑦)
?

=

 

Figure 3: Naïve Bayes Classifier 
 

A multinomial naïve Bayes classifier differs from a traditional naïve Bayes classifier in that it 

makes the assumption that the distribution of 𝑃(𝑥=|	𝑦) is multinomial, which is helpful when 

dealing with features like word frequencies. 

 

2.3 Artificial Neural Networks 

Artificial neural networks (or neural networks) are the foundation of most deep learning 

algorithms and a popular choice in machine learning due to their flexibility and large learning 

capacity. They are inspired by their biological counterparts found in the human brain in that 

their basic units (known as neurons) perform a summation over their weighted inputs (𝒙"𝒘) 

and a bias term (𝑏), forming the synaptic input. This is then passed through an activation 

function (𝑓) whose output (ℎ) is the output of the neuron.  

 

ℎ = 𝑓 BC𝑤=𝑥=

?

E

+ 𝑏F 

Figure 4: Output of a Basic Neuron 
 

Neurons typically have non-linear activation functions, which allow them to perform well on 

data that is not linearly separable. Popular activation functions include the sigmoid function, 

tanh function and step function. In this report, we’ll be using the Rectified Linear Unit or ReLU 
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activation function 𝑓(𝑢) = max{0, 𝑢} for neurons in hidden layers and the softmax function 

for the final classification in the output layer. The softmax function (Figure 5) outputs the 

probability that synaptic input 𝑢 belongs to class 𝑗 in a 𝐾-class classification problem. 

 

𝜎(𝑢)O = 𝑃(𝑦 = 𝑗	|	𝑢) =
𝑒QR

∑ 𝑒QTU
VWE

 

Figure 5: Softmax Function 
 

Neurons are typically stacked into layers, which are sequentially applied on the input, forming 

a neural network. The initial layer, known as the input layer, corresponds to the input features 

and in the case of classification, the output layer is usually a softmax layer with as many 

neurons as number of classes. Fully-connected layers in between the two are known as 

hidden layers and form the architecture for a multilayer perceptron (MLP). Note that MLP is 

a commonly-used misnomer for a more complicated neural network and is not necessarily 

related to a single-layer perceptron.  

 

 

Figure 6: Architecture of a Multilayer Perceptron 
 

Neural networks are trained by systematically adjusting the weights and biases of every 

neuron in the network using the error backpropagation algorithm, which employs gradient 

descent to modify the parameters of the network in order to minimize the loss. 
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2.4 Convolutional Neural Networks 

Convolutional neural network (CNN) is a neural network architecture that has found great 

triumph in tasks involving image, sound and video data [13]. CNNs have especially been 

successful in image classification tasks due to their properties of local connectivity, shared 

parameters and assumption of translational invariance. 

 

Unlike regular neural networks where each neuron is fully connected to all the neurons in the 

previous layer, convolutional neural networks exploit spatially local correlations by forcing 

local connectivity between neurons of adjacent layers. That is, the receptive fields of neurons 

are limited, forming a filter that is replicated across the entire visual field. These replicated 

units share the same weights and biases and form feature maps. By replicating the filter 

parameters in this manner, features are detected regardless of their position in the visual 

field (i.e. translational invariance). The ability of CNNs to extract features and compose them 

to multi-scale hierarchical patterns is one of its core strengths. 

 

Convolutional neural networks typically consist of alternating convolutional and pooling 

layers followed by fully-connected layers. The convolutional layer learns features over small 

patches of the image and these learned features are then convolved with the image to obtain 

the feature maps. Pooling layers, on the other hand, are used to downsample the output from 

the convolutional layer by either taking the maximum (max-pooling) or the mean (average-

pooling) within disjoint pooling regions. During backpropagation, the error terms are 

upsampled at the pooling layer. An example of a popular convolutional neural network 

architecture for handwritten character recognition is shown in Figure 7. 

 

 

Figure 7: LeNet5 Architecture [12] 
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2.5 Graph Convolutional Neural Networks 

While neural networks perform extremely well in several applications, generalizing well-

established model architectures to work with arbitrarily structured graphs has proven to be 

a hard problem due to the increased complexity. One such architecture aimed at tackling this 

challenge in the recent past is graph convolutional neural networks or GCNNs. As the name 

suggests, GCNNs take inspiration from traditional CNNs in that they make the same statistical 

assumptions of stationarity and compositionality through local features but instead of 

working on an 𝑛-dimensional grid, they perform convolution and pooling operations on a 

graph’s spatial domain [3]. 

 

 

Figure 8: Graph Convolutional Neural Network for Text Classification [6] 
 

Because CNNs were originally designed to work with grid-structured data, the convolution 

and pooling operations had to be re-designed for their application in GCNNs. The methods 

quoted in this report use a spectral approach to solve this problem by performing the 

convolution operation on the Fourier domain [3], where strictly localized filters work in a ball 

of radius 𝐾 i.e. 𝐾 hops from the central vertex (𝐾 = filter size or support size). Over the past 

couple years, graph convolution operations have been made much more efficient, with the 

key focus of this report being on the O(n) Chebyshev filter introduced in [6]. 

 

When applied to text classification, GCNNs take in two inputs. The first is the Laplacians of 

the feature graph, which is a static nearest-neighbor graph composed of all the words in the 
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chosen vocabulary that is constructed using word embeddings. That is, the distance between 

two nodes in the graph corresponds to the distance between their respective word vectors. 

This feature graph is constructed once using the training set and is provided to the graph 

convolutional and pooling layers. The second input is the document vector for every sample, 

which acts as the input graph signal since each feature in the document vector represents a 

value for each word in the vocabulary i.e. each node in the feature graph. 

 

2.6 Word Embeddings 

Word embedding is a technique in natural language processing that maps words and phrases 

to vectors of real numbers. Mathematically, this means embedding from a space with one 

dimension per word to a continuous vector space with much lower dimensionality. When 

used as the underlying input representation, word embeddings have proven to increase 

performance in several NLP tasks such as syntactic parsing and sentiment analysis [23]. 

 

One of the methods used to generate word embeddings or word vectors is using neural 

networks. The network is fed a large corpus of text and it produces a vector space of several 

hundred dimensions, where each word is assigned a unique vector. There are two popular 

types of word vectors being used today – word2vec & GloVe. Briefly, word2vec uses a 

predictive model based on the surrounding words (i.e. context) to extract word vectors [16] 

while GloVe is a technique that performs dimensionality reduction on the co-occurrence 

matrix of the vocabulary [20]. We’ll only be using word2vec word embeddings throughout 

this report, specifically Google’s publicly released word2vec vectors. 

 

The advantage of word2vec vectors is that the neural network generating the embeddings is 

trained to reconstruct linguistic contexts of words, preserving semantic analogies. For 

example, vector(Paris)	– 	vector(France) 	+ 	vector(Indonesia) should result in a vector 

very close to vector(Jakarta). Therefore, word vectors are positioned in the vector space 

such that words that share similar context are located close to each other. This is especially 

helpful in the field of text categorization, where the context of the words in the vocabulary 

can help the model pick up similar keywords unique to a class. 
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3. Models 

3.1 Baseline Models 

To provide a benchmark for the more complex models presented in this report, two baseline 

models were implemented using the scikit-learn library for Python – a Linear Support Vector 

Classifier (Linear SVC) and a Multinomial Naïve Bayes Classifier (Multinomial NB). 

 

Support Vector Machines (SVMs) are generally effective in high-dimensional spaces and are 

capable of accurately separating samples into their respective classes. The implementation 

we employed (sklearn.svm.LinearSVC) uses a “one-vs-the-rest” multi-class strategy, which 

trains as many models as number of classes. The Linear SVC models quoted in this report were 

trained with the default hyperparameter values as set in the library (squared hinge loss 

function, penalty parameter of 1.0), unless stated otherwise. 

 

The Multinomial Naïve Bayes Classifier implements the Naïve Bayes algorithm for 

multinomially distributed data and is commonly used in text classification. While the 

implementation we used (sklearn.naive_bayes.MultinomialNB) usually requires integer 

features, fractional counts have been shown to work as well and are used in this project. All 

Multinomial NB models referenced in this report were trained with an additive Lidstone 

smoothing of 0.01 and default values for the remaining hyperparameters, unless stated 

otherwise. 

 

3.2 Multilayer Perceptron 

In order to provide another benchmark for the results of the experiments presented in this 

report, a multilayer perceptron (MLP) and a neural network without hidden layers (i.e. simply 

a softmax layer) were implemented using the TensorFlow library in Python (as were all the 

other neural network models). Any hidden layers in the network use the ReLU activation 

function and apply dropout for regularization while the output layer is a standard softmax 

layer for classification. This model and all the other neural network models in this report were 

trained using the Adam optimizer [11] as it has been proven to be extremely effective at 
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learning deep models, providing separate learning rates for each network parameter that are 

also adapted individually. The optimizer was used with the default decay rates & epsilon value 

as defined in TensorFlow and an initial learning rate of 0.001 for all the neural network models 

in this report. 

 

 
Figure 9: Multilayer Perceptron for Text Categorization 

 

3.3 F. Chollet CNN 

3.3.1 Model Description 

Francois Chollet’s CNN (FC-CNN) for text data [4] is a deep model that applies consecutive 

convolutional and pooling layers followed by fully-connected layers on sequences of word 

embeddings. The input provided is a (truncated or padded) sequence of word identifiers from 

a fixed vocabulary, which are replaced with their respective word embeddings (Google’s 300-

dimensional word2vec embeddings) in the Embedding Layer, forming a tensor of shape 

[sequence_length x embedding_size] for each sample. This is then passed through the 

network as shown in Figure 10 below. 

 

 
Figure 10: F. Chollet CNN for Text Categorization 

 

 
Figure 11: Convolution Operation 
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The convolution and pooling operations in FC-CNN are the 1-D variants of the traditional 

operations where the filters match the height of the embeddings and the width determines 

how many words are convolved at a time. Figure 12 shows how a convolutional filter would 

traverse a sentence, where each box represents an iteration of the filter from left to right. 

 

 
Figure 12: Convolutional Filter with Width of 2 and Stride of 1 

 
The output from the sequential convolutional and pooling layers goes through global max-

pooling and fully-connected layers before being classified by a softmax layer. The fully-

connected layers use the ReLU activation function and apply dropout as in the MLP model. 

 

3.3.2 Changes from Original Implementation 

This model was adapted from Francois Chollet’s blog post on The Keras Blog [4], where he 

also presents an implementation of the model in Keras. The architecture of the model remains 

the same with the exception of the incorporation of dropout in the fully-connected layers for 

regularization. Chollet also uses GloVe embeddings extracted from Wikipedia that remain 

static during training while our implementation fine-tunes Google’s word embeddings for the 

task at hand, which should generally boost model performance as noted in [10]. Finally, 

Chollet employs the RMSProp learning algorithm for his version of the model as opposed to 

the Adam optimizer used in our implementation. 

 

3.4 Y. Kim CNN 

3.4.1 Model Description 

Yoon Kim’s CNN (YK-CNN) for text data was introduced in [10] and further analyzed in [27]. It 

is similar to Chollet’s more traditional architecture, however, instead of sequentially applying 

the convolution and pooling operations, they are applied in parallel to the same input (i.e. 

sequence of word embeddings) and the outputs are concatenated before being fed to fully-

connected layers and classified by the output softmax layer. The convolution operations work 

in an identical fashion to Chollet’s CNN (see Figure 12), however, the pooling operation is 
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global to reduce the axes of the data and output the same number of features from each 

Convolution + Max-Pooling combination for concatenation. 

 

 
Figure 13: Y. Kim CNN for Text Categorization 

 
The parallel convolutional layers allow the network to intuitively look at sequences of word 

embeddings from the perspective of different n-grams (corresponding to different filter 

widths), extracting diverse contextual features for the network to learn from. 

 

3.4.2 Changes from Original Implementation 

Our implementation of Yoon Kim’s CNN is based on Denny Britz’s TensorFlow implementation 

in [2] (Kim’s original implementation is in Theano), which uses the Adam optimizer instead of 

Adadelta as in the original paper, removes L2-constraints on the weights (shown to have no 

effect in [27]) and changes the weight initializations from random uniform distributions (for 

convolutional layers) and random normal distributions (for fully-connected layers) to uniform 

Xavier initialization for all layers. 

 

3.5 Graph CNN 

3.5.1 Model Description 

Graph convolutional neural networks (GCNNs) are one of the latest breakthroughs in deep 

learning and the primary focus of this report. Our implementation of graph convolutional 

neural networks is based on the paper by M. Defferrard, X. Bresson & P. Vandergheynst [6] 

and the supporting codebase available on GitHub. 
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GCNNs take in the feature graph and the input graph signal and apply localized graph filters 

in order to extract meaningful features from the data. In the case of text categorization, the 

feature graph is constructed from the pre-trained word embeddings of the vocabulary. That 

is, the nodes in the graph represent the words in the vocabulary while the edges between the 

nodes correspond to the similarity between the words, which is computed using the cosine 

similarity between the respective word embeddings. Only the top N edges are retained (i.e. 

nearest-neighbor graph) to restrict the number of edges in the graph. The graph signal passed 

for each sample is the document vector, which is composed of the same vocabulary as present 

in the feature graph. 

 

The architecture of the model is fairly similar to traditional CNNs, with consecutive graph 

convolutional layers and graph pooling layers followed by a dropout layer, fully-connected 

layers and an output softmax layer for classification. The fully-connected layers in the GCNN 

are identical to the ones used in MLP (i.e. ReLU & dropout), however, batch normalization is 

also applied before the non-linearity (explained in Section 3.5.3). 

 

 
Figure 14: Graph CNN for Text Categorization 

 

3.5.2 Filters Implemented 

There are three main graph filters implemented and tested for GCNNs in this report – 

Chebyshev (filter for ChebNet) [6], Spline [3] & Non-Parametric Fourier. The implementations 

used are identical to the ones provided in the codebase for [6] and further details about the 

filters (including the underlying theory and math) can be found in [6] and [3]. They are also 

briefly touched upon in Section 2.5 of this report. 
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3.5.3 Improvements 

3.5.3.1 Dropout 

The first improvement made to the original architecture was the addition of a dropout layer 

after the graph convolutional and pooling layers. Dropout is a powerful regularization tool for 

neural networks and prevents the neurons from co-adapting, forcing the network to learn 

general characteristics from the data and reducing overfitting [24]. 

 

3.5.3.2 Batch Normalization 

The second improvement made was the addition of batch normalization [8] to the fully-

connected layers in the network. This was done because adding even a single fully-connected 

layer after the graph convolutional and pooling layers was consistently preventing the 

network from converging and learning anything useful when the vocabulary size was 

considerably large (tested with 10,000 words). 

 

 
Figure 15: Modified Fully-Connected Layers for GCNNs 

 

The additional dropout layer from 3.5.3.1 became even more important after batch 

normalization was added as the network immediately began overfitting the data when the 

dropout rate was 0 (i.e. dropout keep probability of 1.0) and a fully-connected layer was 

added (GC15_5-FC100). The results of the different test accuracies for GC15_5-FC100 on 20 

Newsgroups with a vocabulary size of 10,000 can be found in Table 1. 

 

Dropout Keep Probability Batch Normalization Max. Test Accuracy 
0.5 Y 69.84 
1.0 Y 10.78 
0.5 N 5.37 
1.0 N 5.37 

Table 1: Effect of Dropout & Batch Norm on GC15_5-FC100 (Chebyshev) 
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3.5.3.3 Other Improvements 

tf-idf document vectors are used as opposed to count vectors used in the implementation by 

M. Defferrard et al. as they better represent data for text classification (further elaborated on 

in Section 4.1.1). 

 

Additionally, all the weights in our network are initialized using the Xavier initialization as 

opposed to being sampled from a truncated normal distribution with a standard deviation of 

0.1 as in the original implementation, which is empirically shown to be better (~1% increase 

in performance) when the network has no fully-connected layers and have little to no effect 

when the network has fully-connected layers, as can be seen in Table 2. 

 

Model Architecture Weight Initialization Max. Test Accuracy 
GC5_32 Uniform Xavier 71.65 
GC5_32 Truncated Normal 70.78 

GC15_5-FC100 Uniform Xavier 69.84 
GC15_5-FC100 Truncated Normal 70.26 

Table 2: Effect of Weight Initialization (Chebyshev, 20 Newsgroups, |V|= 10,000) 
 

Overall, our implementation has a maximum test accuracy of 71.65% as opposed to 68.26% 

quoted in [6] when trained with the same model architecture (i.e. GC5_32) and identical 

hyperparameters (16-NN feature graph, Adam optimizer, initial learning rate of 0.001) on the 

20 Newsgroups dataset. Our implementation also has a significantly higher test accuracy on 

the RCV1 dataset even with a simpler model architecture than the results quoted in [7], 

though it should be noted that there is a slight variation in the dataset split and we use 

different hyperparameters to train our model. 

 

Dataset (Vocabulary Size) Model Architecture (Filter) Test Accuracy 
20 Newsgroups (10,000) GC5_32 (Chebyshev) [6] 68.26 [6] 
 GC5_32 (Chebyshev) 71.65 
RCV1 (2,000) GC[?]_4-P4-FC1000 (Spline) [7] 3 69.41 [7] 
 GC5_32 (Chebyshev) 89.68 

Table 3: Comparison of GCNN Test Accuracies with Existing Literature 
  

                                                        
3 [?] is used because the filter size (as used in our implementation) is not clearly defined in the paper. 
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4. Experiments 

4.1 Preprocessing 

In order to keep the results of our experiments consistent and focused on the models as 

opposed to the representation, the preprocessing of the raw text datasets is kept simple and 

constant throughout all the runs. 

 

First, the raw text is cleaned using simple regular expressions that delete any characters that 

don’t match /[^A-Za-z0-9(),!?'$]/, replace any sequence of one or more digits with 

“NUM” and separate punctuation & clitics from their respective adjacent words. The entire 

text is then converted into lowercase for consistent frequency counts.  

 

Next, the cleaned text is tokenized and vectorized to count vectors using scikit-learn’s 

CountVectorizer, which also removes any English stop words. Once the count vectors are 

derived, the vocabulary is reduced by keeping only the top 𝑁 most frequent words. Due to 

the reduction in vocabulary size, some samples in the dataset may become too short (due to 

excessive use of infrequent words) and are subsequently removed as outliers. 

 

Finally, the input data for the model is generated. For YK-CNN & FC-CNN, the cleaned text is 

tokenized and converted into sequences of word IDs (extracted from the vocabulary) after 

which it is padded or truncated to fit the chosen sequence length. For the other models (MLP, 

GCNN, Linear SVC & Multinomial NB), the count vectors are transformed into normalized tf-

idf vectors using scikit-learn’s TfidfTransformer. 

 

4.1.1 count vs. tf-idf 

Throughout the experiments mentioned in this report, I have represented the documents as 

normalized tf-idf (term frequency – inverse document frequency) document vectors. tf-idf 

document vectors scale down the impact of tokens (i.e. words) that occur very frequently 

throughout a corpus and hence, allow unique keywords to have significantly greater weight, 

which is essential for text classification. Unlike count vectors, which simply take into account 

the frequencies of the tokens (i.e. tf), tf-idf multiplies the token’s frequency with the token’s 
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inverse document frequency. This is shown in Figure 16, where 𝑐 is the corpus, 𝑡 is the token, 

𝑛 is the total number of documents in the corpus and df(𝑐, 𝑡) or document frequency is the 

number of documents that contain the token. 

 

tfidf(𝑐, 𝑡) = tf(𝑡) × idf(𝑐, 𝑡) 

idf(𝑐, 𝑡) = log k
1 + 𝑛

1 + df(𝑐, 𝑡)l + 1 

Figure 16: tf-idf Equations 
 

In order to prove tf-idf document vectors perform better than count vectors for the task of 

text categorization, we ran experiments on the benchmark models and ChebNet using the 20 

Newsgroups dataset with a vocabulary size of 10,000. The results in Table 4 empirically show 

that tf-idf vectors consistently outperform count vectors by approximately 3% – 8% for all of 

the models. 

 

MODEL NAME 
TEST ACCURACY 

Count Vectors tf-idf Vectors 
Linear SVC 60.54 69.72 

Multinomial NB 64.52 69.54 
Softmax 68.36 70.93 

MLP (FC360) 70.80 73.08 
Graph CNN (Chebyshev, GC5_32) 67.95 71.65 

Table 4: Count Vectors vs. tf-idf Vectors for 20 Newsgroups (|V| = 10,000) 
 

4.2 Rotten Tomatoes Sentence Polarity 

The Rotten Tomatoes sentence polarity (RT Polarity) dataset is Pang and Lee's movie review 

sentiment polarity dataset [17] [18], which consists of 5,331 positive and 5,331 negative 

movie reviews. For all the models, the data is shuffled (with a fixed random seed) and 10% of 

the dataset is used as the test set (1,066 documents), which is identical to the split used in 

[10] and [27]. 

 

In the following experiments, the original vocabulary size of 18,121 words is shrunk to 5,000 

by selecting the most frequent words. From the reduced vocabulary, 4,817 word embeddings 
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are retrieved from Google’s word2vec and the rest are randomly initialized. The traditional 

CNN models (FC-CNN & YK-CNN) employ a maximum sequence length of 56 words (maximum 

sentence length in dataset) and the Graph CNN models use a 16-NN graph constructed from 

the vocabulary’s word vectors. All the neural network models were trained for 200 epochs. 

 

MODEL NAME ARCHITECTURE ACCURACY 
Linear SVC - 75.33 
Multinomial NB - 77.20 
Softmax - 77.67 
MLP FC100 77.49 
 FC1000 77.11 
   
FC-CNN CL5_128-P5-CL5_128-P5-FC128 76.92 
YK-CNN CL3_128-CL4_128-CL5_128 77.20 
   
GCNN (Chebyshev) GC5_32 77.86 
GCNN (Spline) GC5_32 78.24 
GCNN (Fourier) GC5000_32 77.20 

Table 5: Test Accuracies of Models on RT Polarity 
 

Model Test Accuracy No. of Parameters Training Time 
Linear SVC 75.33 N/A 0.06s 4 
Multinomial NB 77.20 N/A 0.01s 4 
Softmax 77.67 10,002 1.07s 
FC100 77.49 500,302 3.81s 
FC1000 77.11 5,003,002 19.66s 
GC5_32 (Chebyshev) 77.86 320,194 5.16s 
GC5_32 (Spline) 78.24 320,194 7.94s 
GC5000_32 (Fourier) 77.20 480,034 10.28s 

Table 6: No. of Parameters & Approx. Training Time per Epoch for RT Polarity 
 

4.3 20 Newsgroups 

The 20 Newsgroups dataset [21] comprises of around 18,000 newsgroups posts on 20 topics 

split into train (10,116 documents) and test (7,068 documents) subsets based upon whether 

the messages were posted before or after a particular date. Some of the topics are very 

                                                        
4 The training time quoted for the baseline models is the total training time. 
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closely related to each other (e.g. rec.autos & rec.motorcycles) while some topics are highly 

unrelated (e.g. misc.forsale & sci.space). The headers, footers and quotes (newsgroup-related 

metadata) of each document were removed to make the performance metrics more realistic. 

 

4.3.1 Hyperparameter Optimization 

In order to perform an unbiased comparison of ChebNet to the benchmark models (Linear 

SVC, Multinomial NB & MLP), we tuned the hyperparameters of all four models using a 

validation set (10% of train set, ~1,000 documents) with a vocabulary size of 10,000. 

 

4.3.1.1 Linear SVC 

The only hyperparameter to be tuned for Linear SVC is the penalty parameter C of the error 

term, which was tested in the range of 0.1 to 50.0 in intervals of 0.1. The maximum validation 

accuracy of 78.34% was obtained with a C value of 41.0. 

 

 
Figure 17: Penalty Parameter C vs. Validation Accuracy for Linear SVC on 20 Newsgroups 

 

4.3.1.2 Multinomial NB 

The only hyperparameter to be tuned for the Multinomial Naïve Bayes Classifier is the 

additive smoothing parameter 𝛼, which accounts for features that may not be present in 
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training samples. The values tested were between 1e-10 (minimum possible value) and 1e-

01 for Lidstone smoothing and 1.0 for Laplace smoothing. The maximum validation accuracy 

of 75.57% was obtained when 𝛼 was equal to 1e-03. 

 

Alpha (𝜶) Validation Accuracy 
1e-10 68.84 
1e-09 69.44 
1e-08 70.03 
1e-07 70.92 
1e-06 72.21 
1e-05 73.29 
1e-04 74.28 
1e-03 75.57 
1e-02 74.97 
1e-01 71.22 

1.0 56.18 

Table 7: Tuning Alpha for Multinomial NB on 20 Newsgroups 
 

4.3.1.2 Multilayer Perceptron 

The MLP model was tuned by experimenting with the number of neurons in a single hidden 

layer and testing a couple architectures with two hidden layers. The accuracies listed below 

in Table 8 show the optimal architecture to be FC100. All models were trained for 100 epochs. 

 

Architecture Validation Accuracy 
Softmax 76.95 
FC100 80.12 
FC250 80.02 
FC500 80.02 
FC1000 79.62 
FC2000 79.82 
FC2000-FC500 78.73 
FC2000-FC1000 79.03 

Table 8: Validation Accuracies of MLP on 20 Newsgroups 
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4.3.1.3 Graph CNN (Chebyshev) 

The hyperparameters tuned for ChebNet were the number of edges in the feature graph and 

the filter size & number of features for a single graph convolutional layer. Through previous 

experiments, we observed no increase in performance with the addition of graph pooling, 

fully-connected layers or multiple graph convolutional layers (further discussed in Section 

5.4). A grid search was performed on the values listed in Table 9 and the model with the 

highest validation accuracy of 79.92% was G2_32 with an 8-NN feature graph. The complete 

results can be found in Appendix A.1. 

 

Hyperparameter Values Tested 
Number of Edges 4, 8, 16 

Filter Size (or Support Size) 2, 4, 5 
Number of Features 8, 16, 32 

Table 9: Hyperparameter Values for Grid Search on Graph CNN (Chebyshev) 
 

4.3.2 Final Results 

The original vocabulary size of 72,366 words is shrunk to 10,000 by selecting the top words 

by frequency. From the reduced vocabulary, 9,164 word embeddings are retrieved from 

Google’s word2vec while 836 word embeddings are randomly initialized. The traditional CNN 

models (FC-CNN & YK-CNN) employ a sequence length of 1,000 words and the Graph CNN 

models use an 8-NN feature graph. All neural network models were trained for 200 epochs. 

 

MODEL NAME ARCHITECTURE ACCURACY 
Linear SVC [C = 41.0] 69.54 
Multinomial NB [𝛼 = 0.001] 68.45 
Softmax - 70.93 
MLP FC100 72.92 
   
FC-CNN CL5_128-P5-CL5_128-P5-CL5_128-P5-FC128 63.20 
YK-CNN CL3_128-CL4_128-CL5_128 71.39 
   
GCNN (Chebyshev) GC2_32 71.51 
GCNN (Spline) GC2_32 71.35 
GCNN (Fourier) GC10000_32 70.46 

Table 10: Test Accuracies of Models on 20 Newsgroups 
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Model Test Accuracy No. of Parameters Training Time 
Linear SVC 69.54 N/A 10.84s 5 
Multinomial NB 68.45 N/A 0.05s 5 
Softmax 70.93 200,020 3.82s 
FC100 72.92 1,002,120 7.71s 
GC2_32 (Chebyshev) 71.51 6,400,116 41.38s 
GC2_32 (Spline) 71.35 6,400,116 65.86s 
GC10000_32 (Fourier) 70.46 6,720,052 84.81s 

Table 11: No. of Parameters & Approx. Training Time per Epoch for 20 Newsgroups 
 

4.4 Reuters Corpus Volume 1 

Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire 

stories made available by Reuters Ltd. for research purposes [14]. The original dataset was 

retrieved as a large set of raw XML files, from which the documents and labels were extracted 

with the help of the publicly released online appendices of the original paper, which contain 

text files that list the IDs of the documents to be considered in the RCV1-v2 version of the 

dataset and the mappings of documents to assigned classes. 

 

The original documents pose a multiclass problem with 103 classes where a document can 

belong to more than one class and the classes are arranged in a hierarchical manner. In order 

to convert the dataset to a single class classification problem, only the 55 second-level classes 

are considered, out of which one class is removed as it covers nearly 25% of the data and a 

couple classes are removed because they have less than 10 documents (after documents with 

multiple classes are removed from the dataset). Thus, the final dataset contains 420,282 

documents from 52 unique classes. This is similar to the split used in [7] and originally used 

by Srivastava in [24]. 

 

The resulting dataset is chronologically split equally into train and test sets with 210,141 

documents each. A chronological split is chosen instead of shuffling the dataset and splitting 

randomly because a majority of text classification tasks require training on currently available 

material and then applying the system to documents that are received later. Furthermore, a 

                                                        
5 The training time quoted for the baseline models is the total training time. 
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chronological split decreases the probability of duplicate or near-duplicate documents such 

as news articles about the same event to be split between the train and test subsets, providing 

a more realistic performance measure. 

 

4.4.1 Hyperparameter Optimization 

In order to perform an unbiased comparison of ChebNet to the benchmark models (Linear 

SVC, Multinomial NB & MLP), we tuned the hyperparameters of all four models using a 

validation set (10% of train set, ~20,000 documents) with a vocabulary size of 10,000. 

 

4.4.1.1 Linear SVC 

The only hyperparameter to be tuned for Linear SVC is the penalty parameter C of the error 

term, which was tested in the range of 0.1 to 50.0 in intervals of 0.1. The maximum validation 

accuracy of 90.79% was obtained with a C value of 14.3. 

 

 

Figure 18: Penalty Parameter C vs. Validation Accuracy for Linear SVC on RCV1 
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4.4.1.2 Multinomial NB 

The only hyperparameter to be tuned for the Multinomial Naïve Bayes Classifier is the 

additive smoothing parameter 𝛼, which accounts for features that may not be present in 

training samples. The values tested were between 1e-10 (minimum possible value) and 1e-

01 for Lidstone smoothing and 1.0 for Laplace smoothing. The maximum validation accuracy 

of 67.48% was obtained when 𝛼 was equal to 1e-10. 

 

Alpha (𝜶) Validation Accuracy 
1e-10 67.48 
1e-09 67.46 
1e-08 67.43 
1e-07 67.36 
1e-06 67.34 
1e-05 67.22 
1e-04 67.15 
1e-03 66.83 
1e-02 66.27 
1e-01 63.38 

1.0 52.99 

Table 12: Tuning Alpha for Multinomial NB on RCV1 
 

4.4.1.2 Multilayer Perceptron 

The MLP model was tuned by experimenting with the number of neurons in a single hidden 

layer and testing a couple architectures with two hidden layers. The accuracies listed below 

in Table 13 show the optimal architecture to be FC500. All models were trained for 50 epochs. 

 

Architecture Validation Accuracy 
Softmax 90.41 
FC100 91.01 
FC250 91.02 
FC500 91.05 
FC1000 90.93 
FC2000 90.96 
FC2000-FC500 90.52 
FC2000-FC1000 90.57 

Table 13: Validation Accuracies of MLP on RCV1 
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4.4.1.3 Graph CNN (Chebyshev) 

The hyperparameters tuned for ChebNet were the number of edges in the feature graph and 

the filter size & number of features for a single graph convolutional layer. Through previous 

experiments, we observed no increase in performance with the addition of graph pooling, 

fully-connected layers or multiple graph convolutional layers (further discussed in Section 

5.4). A grid search was performed on the values listed in Table 14 and the model with the 

highest validation accuracy of 91.04% was GC4_8 with a 16-NN feature graph. The complete 

results can be found in Appendix A.2. 

 

Hyperparameter Values Tested 
Number of Edges 4, 8, 16 

Filter Size (or Support Size) 2, 4, 5 
Number of Features 8, 16, 32 

Table 14: Hyperparameter Values for Grid Search on Graph CNN (Chebyshev) 
 

Additionally, a search was performed on the dropout values for the chosen hyperparameters 

from the grid search above. The optimal dropout keep probability was 0.2 with a resulting 

validation accuracy of 91.19%. 

 

 

Figure 19: Dropout vs. Validation Accuracy for GC4_8 on RCV1 
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4.4.2 Final Results 

The original vocabulary size of 270,589 words is shrunk to 10,000 by selecting the top words 

by frequency. From the reduced vocabulary, 8,870 word embeddings are retrieved from 

Google’s word2vec while 1,130 word embeddings are randomly initialized. The traditional 

CNN models (FC-CNN & YK-CNN) employ a maximum sequence length of 1,000 words and the 

Graph CNN models use a 16-NN graph constructed from the embeddings of the vocabulary. 

All neural network models were trained for 50 epochs. 

 

MODEL NAME ARCHITECTURE ACCURACY 
Linear SVC [C = 14.3] 91.19 
Multinomial NB [𝛼 = 1e-10] 68.44 
Softmax - 90.86 
MLP FC500 91.44 
   
FC-CNN CL5_128-P5-CL5_128-P5-CL5_128-P5-FC128 89.94 
YK-CNN CL3_128-CL4_128-CL5_128 90.75 
   
GCNN (Chebyshev) GC4_8 [Dropout Keep = 0.2] 91.33 
GCNN (Spline) GC4_8 91.29 
GCNN (Fourier) GC10000_8 91.35 

Table 15: Test Accuracies of Models on RCV1 
 

Model Test Accuracy No. of Parameters Training Time 
Linear SVC 91.19 N/A 305.30s 6 
Multinomial NB 68.44 N/A 0.99s 6 

Softmax 90.86 520,052 445.10s 
FC500 91.44 5,026,552 860.00s 
GC4_8 (Chebyshev) 91.33 4,160,092 1769.18s 
GC4_8 (Spline) 91.29 4,160,092 2567.82s 
GC10000_8 (Fourier) 91.35 4,240,060 2997.90s 

Table 16: No. of Parameters & Approx. Training Time per Epoch for RCV1 
 

  

                                                        
6 The training time quoted for the baseline models is the total training time. 
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5. Discussion of Results 

5.1 Relative Performance of Models 

We see from the results of the experiments on RT Polarity (Table 5), 20 Newsgroups (Table 

10) and RCV1 (Table 15) that all the deep models tested in this report with the exception of 

F. Chollet’s CNN consistently outperform or at least perform as well as the two baseline 

models (Linear SVC & Multinomial NB). However, the CNNs and GCNNs tend to fall short of 

the simpler MLP models, which have significantly fewer parameters to train (as can be seen 

in Table 6, Table 11 and Table 16). This is in stark contrast to the results reported in [6] where 

GC5_32 (Chebyshev) is said to outperform multilayer perceptrons (specifically, FC2500 and 

FC2500-500). The difference in results can be attributed to the use of tf-idf vectors as opposed 

to count vectors in our implementation and the much smaller hidden layers tested in our 

experiments. This is also in line with the results obtained during hyperparameter optimization 

in Table 8 and Table 13, where more complex MLP models resulted in lower validation 

accuracies on 20 Newsgroups and RCV1. 

 

The similarity in performance (difference of less than 3%) for most of the models on all three 

datasets suggests that either the current data representation has been saturated or we still 

have not found the correct architecture needed for the task of text categorization, especially 

one that can potentially have a test accuracy close to 100%. This is especially true for the deep 

models, which take a considerably longer time to train and are much more complex than their 

simpler counterparts but fail to produce significantly higher test accuracies.  

 

5.2 Relative Performance on Datasets 

Looking at the performance of the models across the three datasets, we see that our models 

do exceedingly well on the RCV1 dataset as compared to the other two datasets. This is 

probably because of two important reasons. The first is the abundance of high quality training 

data in RCV1, which consists of professionally written news articles whereas the other two 

datasets contain user-submitted online texts. The second is the difference in the themes of 

the datasets and the resulting separation of classes. In RT Polarity, for example, the sentences 
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used to positively or negatively describe a movie may be quite similar and don’t always use 

easily identifiable keywords. In contrast, samples from RCV1 (which is a news corpus) are very 

topical and use a high number of class-specific keywords, which are further amplified due to 

the use of tf-idf document vectors. 

 

An interesting anomaly in the experimental results for RCV1 is the considerably lower test 

accuracy of the Multinomial Naïve Bayes Classifier (68.44%) as compared to the other models 

(~90%). This is probably due to the fact that the RCV1 dataset is particularly unbalanced, 

having 31,305 samples in its largest class and only 22 samples in its smallest, which is not ideal 

for a naïve Bayes model as the resulting probabilities may be skewed. 

 

5.3 Effect of Graph CNN Filter 

When comparing the different graph convolutional neural networks tested in this report, we 

see that using different filters has a notable effect on the final accuracies of the resulting 

models. While the Chebyshev and Spline filters tend to result in models with similar test 

accuracies, the non-parametric Fourier filter fails to perform as well despite being more 

computationally complex and inefficient in comparison. This observation is identical to the 

one reported in [6]. Additionally, from the results in Table 6, Table 11 and Table 16, we see 

that the Chebyshev filter is substantially more computationally efficient than the other two 

filters, however, it is important to reemphasize that neither of the GCNNs are as efficient as 

the MLP models with similar (or greater) test accuracies. 

 

5.4 Graph CNN (Chebyshev) 

Similar to the observations made about MLP, we see that the performance of ChebNet does 

not improve with increasing model complexity in Table 17 (next page). The experiments show 

that increasing the number of feature maps, incorporating pooling or the addition of fully-

connected layers does not improve test accuracy and may also degrade the performance of 

the model. We also see that a smaller support size generally improves model performance, 

however, it is important to note that using a support size of 1 prevented the model from 

learning anything useful. The network also fails to learn anything useful when multiple graph 
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convolutional and pooling layers are added (>2 for 20 Newsgroups). This is probably due to 

the lack of hierarchical information in text data and a drastic loss of information with the 

application of consecutive convolution and pooling operations. 

 

Architecture Test Accuracy 
GC2_32 (Highest Validation Accuracy) 71.51 
GC5_8 (Highest Test Accuracy) 71.76 
GC5_32 (Architecture in [6]) 71.65 
  
GC2_4 71.62 
GC2_4-P4 69.21 
GC2_4-P4-FC1000 62.99 
GC2_4-GC2_8 70.63 
GC15_5 70.45 
GC15_5-FC100 69.84 

Table 17: Test Accuracies of GCNN Architectures (20 Newsgroups, |V| = 10,000) 
 

  



 32 

6. Client Application 
A simple client application was built for the models trained on the RCV1 dataset and open-

sourced on GitHub.7 The application can be used to categorize news articles provided they 

match at least one of the RCV1 classes. It is built on top of Flask, a Python micro-framework, 

on server-side and uses vanilla HTML, CSS and JavaScript on the client-side. A high-level 

architecture and overview of the flow of the client application is shown in Figure 20. Screen 

captures of the client application are shown in Figure 21 and Figure 22 (next page). 

 

 

Figure 20: Architecture of Client Application 
 

 
Figure 21: Screenshot of Client Web App 

                                                        
7 https://github.com/SuyashLakhotia/TextCategorization-Demo 
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Figure 22: Classifying a News Article from Bloomberg 
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7. Conclusion 
In this report, we have presented three major deep learning models for text categorization 

and compared their performance on three benchmark datasets – RT Polarity, 20 Newsgroups 

and RCV1 after improving on their initial implementations. 

 

We observe that graph convolutional neural networks achieve a similar performance as 

standard convolutional neural networks when using the same vocabulary size and pre-trained 

word embeddings. However, while GCNNs and CNNs outperform the baseline models (which 

take an extremely short time to train), they are only as good or sometimes slightly worse than 

simpler multilayer perceptrons with a single hidden layer that have significantly fewer 

trainable parameters.  

 

Nonetheless, the experiments in this report prove the ability of GCNNs to extract meaningful 

local features through graph convolutional layers and showcase the effectiveness of the 

Chebyshev filter introduced in [6], which performs better than the other filters tested and is 

also much more computationally efficient. 

 

The results of the experiments also shed light on the powerful capability of tf-idf document 

vectors in capturing the necessary information needed for text classification, producing 

simple models with impressive test accuracies. 
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8. Future Work 
While this project has been successful in comparing Graph CNNs to other machine learning 

models for the purpose of text classification, below are several suggestions for future 

research in this field: 

 

1. Advanced Data Exploration: Further data exploration is required to understand the 

distribution of the representations versus the labels. It is important to recognize if the 

models are performing well solely on well-separated classes or are able to differentiate 

between similar classes as well. 

2. Different Data Representations: As we saw in our experiments, Graph CNNs are not able 

to completely take advantage of the combination of information they possess (i.e. tf-idf 

document vectors and word embeddings) when compared to the other models. Perhaps 

more expressive features are necessary that are hierarchical in nature (for convolutional 

operations) which would allow GCNNs to truly benefit from its capabilities. Furthermore, 

vocabulary indexes in the document vectors can be re-arranged, possibly on a scale of 

sentiment or another semantic attribute, to encode features in local neighborhoods. 

3. Hyperparameter Tuning / Architecture Experiments: Additional exhaustive experiments 

are needed to test different hyperparameters and model architectures. Due to limited 

time and resources, we chose only a subset of the possible hyperparameter values in our 

experiments and trained without cross-validation. 

4. Additional Models: There were numerous deep models for text categorization that were 

excluded from this project. This includes LSTMs & bidirectional LSTMs, one-hot-CNNs & 

bag-of-words-CNNs [9] and character-level-CNNs [28]. These models should be compared 

as well in future experiments in order to gain a broader perspective. Additionally, it may 

be beneficial to investigate the effect of using graph convolutional neural networks purely 

as feature generators for simpler models such as Linear SVC. 

5. Additional Datasets: While the datasets chosen from this project dealt with diverse 

themes (review polarity, forum posts, news articles), the size of the datasets were not 

similar and may have skewed certain results due to lack of training data. Thus, future 
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experiments would require datasets that deal with diverse themes and have similar 

quality and quantity of training data to better compare the relative performance of the 

models on different datasets. 

6. Better Preprocessing: While the preprocessing of the datasets in this project was kept 

extremely naïve for research purposes, it is important to preprocess the text data using 

more robust methods for actual production models. For example, better tokenization and 

entity recognition would help differentiate between “…several deep wells…” and “…said 

Mr. Wells…”. 
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Appendix A: Hyperparameter Grid Search 

A.1 Graph CNN on 20 Newsgroups 

Below are the results of a grid search performed for Graph CNN (Chebyshev) on the 20 

Newsgroups dataset with a vocabulary size of 10,000. Each model was trained for 100 epochs 

with an initial learning rate of 0.001 and dropout of 0.5. 

 

No. of Edges Filter Size No. of Features Validation Accuracy 

4 2 8 0.7823936696340257 

4 2 16 0.7883283877349159 

4 2 32 0.7893175074183977 

4 4 8 0.7843719090009891 

4 4 16 0.7952522255192879 

4 4 32 0.7912957467853611 

4 5 8 0.7794263105835806 

4 5 16 0.7873392680514342 

4 5 32 0.7873392680514342 

8 2 8 0.7942631058358062 

8 2 16 0.7942631058358062 

8 2 32 0.7992087042532147 

8 4 8 0.7942631058358062 

8 4 16 0.7932739861523245 

8 4 32 0.7912957467853611 

8 5 8 0.7893175074183977 

8 5 16 0.7883283877349159 

8 5 32 0.7883283877349159 

16 2 8 0.7952522255192879 

16 2 16 0.7972304648862513 

16 2 32 0.7962413452027696 

16 4 8 0.7893175074183977 
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16 4 16 0.7903066271018794 

16 4 32 0.7893175074183977 

16 5 8 0.7893175074183977 

16 5 16 0.7893175074183977 

16 5 32 0.7903066271018794 

 

A.2 Graph CNN on RCV1 

Below are the results of a grid search performed for Graph CNN (Chebyshev) on the RCV1 

dataset with a vocabulary size of 10,000. Each model was trained for 20 epochs with an initial 

learning rate of 0.001 and dropout of 0.5. 

 

No. of Edges Filter Size No. of Features Validation Accuracy 

4 2 8 0.90768059388978772 

4 2 16 0.90853716569905774 

4 2 32 0.90972684876748833 

4 4 8 0.90948891215380223 

4 4 16 0.90825164176263440 

4 4 32 0.90901303892643004 

4 5 8 0.90967926144475109 

4 5 16 0.90934615018559051 

4 5 32 0.90777576853526221 

8 2 8 0.91015513467212339 

8 2 16 0.90953649947653947 

8 2 32 0.90958408679927671 

8 4 8 0.90982202341296281 

8 4 16 0.90887027695821831 

8 4 32 0.90877510231274383 

8 5 8 0.90977443609022557 

8 5 16 0.90963167412201384 

8 5 32 0.90749024459883887 
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16 2 8 0.89492719139621202 

16 2 16 0.90753783192157611 

16 2 32 0.90896545160369280 

16 4 8 0.91039307128580949 

16 4 16 0.90934615018559051 

16 4 32 0.90853716569905774 

16 5 8 0.91025030931759776 

16 5 16 0.90991719805843718 

16 5 32 0.90806129247168554 

 


